Courbure, longueur d'un arc

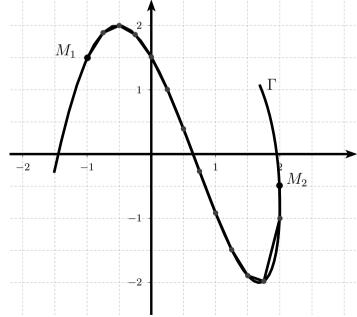
I. Longueur d'un arc de courbe paramétrée

Considérons une courbe paramétrée Γ , décrite par un point mobile M(t) de coordonnées (x(t); y(t)), qui a les caractéristiques suivantes :

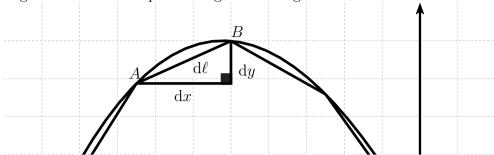
- elle n'a pas de point double (point correspondant à deux valeurs de t);
- elle n'a pas de point de rebroussement (le point se déplace toujours dans le même sens);
- les fonctions x et y sont dérivables et x', y' sont continues;
- les fonctions x'(t) et y'(t) ne s'annulent pas simultanément.

Soit M_1 et M_2 deux des points de Γ , associés aux valeurs t_1 et t_2 . On cherche à calculer la longueur de l'arc de la courbe compris entre M_1 et M_2 .

L'idée intuitive consiste à construire des lignes polygonales qui sont proches de la courbe, avec un nombre de points de plus en plus grand.



Entre deux points A et B suffisamment proches, on peut approcher la longueur de l'arc \widehat{AB} par la longueur du segment $\mathrm{d}\ell = AB$.



Or:

$$d\ell = \sqrt{\mathrm{d}x^2 + \mathrm{d}y^2} = \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2} \,\mathrm{d}t$$
$$=^{(*)} \sqrt{(x'(t))^2 + (y'(t))^2} \,\mathrm{d}t = ||\overrightarrow{M}'(t)|| \,\mathrm{d}t.$$

(*) cette égalité n'en est pas vraiment une...

La longueur de l'arc de courbe entre M_1 et M_2 est donc :

$$\ell = \int_{t_1}^{t_2} ||\overrightarrow{M}'(t)|| dt = \int_{t_1}^{t_2} \sqrt{(x'(t))^2 + (y'(t))^2} dt$$

Remarques:

- cette longueur ne dépend pas de la paramétrisation choisie;
- en pratique, on tombe souvent sur des intégrales non calculables (pas de primitive pour la fonction sous l'intégrale), y compris pour des fonctions « simples » (exemples : la fonction sinus ; une ellipse, etc.) : on doit se contenter d'approximations.

EXEMPLE 1:

Soit Γ la courbe paramétrée définie sur $[0; 2\pi]$ par $\begin{cases} x(t) = \cos(t) \\ y(t) = \sin(t) \end{cases}$.

Déterminer la longueur de Γ .

Réponse :

$$\ell = \int_0^{2\pi} \sqrt{(-\sin(t))^2 + (\cos(t))^2} \, \mathrm{d}t = \int_0^{2\pi} 1 \, \mathrm{d}t = [t]_0^{2\pi} = 2\pi - 0 = 2\pi.$$
 Les plus perspicaces auront remarqué que Γ est en fait un cercle de

Les plus perspicaces auront remarqué que Γ est en fait un cercle de rayon 1 (le cercle trigonométrique) donc on retrouve ℓ avec $\ell = 2\pi R$.

Remarquons par ailleurs que
$$\Gamma$$
 peut aussi être paramétrée par $\begin{cases} x(t) = \cos(2t) \\ y(t) = \sin(2t) \end{cases}$ sur $[0; \pi]$.

Donc $\ell = \int_0^\pi \sqrt{(-2\sin(2t))^2 + (2\cos(2t))^2} \, \mathrm{d}t = \int_0^\pi 2 \, \mathrm{d}t = [2t]_0^\pi = 2\pi$.

Le changement de paramétrage ne change rien.

II. Orientation et abscisse curviligne

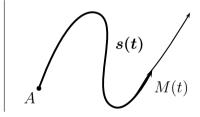
1) Orientation d'une courbe

Une courbe vérifiant les conditions vues au I°) peut être orientée (on peut y définir un sens de parcours) de deux façons. Par exemple, on peut orienter la courbe d'une fonction dans le sens des abscisses croissantes ou décroissantes.

2) Abscisse curviligne

Avant défini un « point de départ » A pour la courbe, on peut considérer la longueur de l'arc de la courbe entre le point A et le point actuel M(t).

Cette longueur est appelée abscisse curviligne et notée s(t).



Remarques:

- On notera que le terme d'abscisse signifie que l'on peut repérer un point de la courbe à partir de la valeur de s : on pourrait considérer que x et y sont des fonctions de s et le point courant pourra être noté M(s).
- En notant t_0 la valeur du paramètre correspondant au point A et sous les conditions énoncées au début du ${\bf I}$, on a :

$$s(t) = \int_{t_0}^t ||\overrightarrow{M}'(u)|| \, \mathrm{d}u = \int_{t_0}^t \sqrt{(x'(u))^2 + (y'(u))^2} \, \mathrm{d}u.$$

- Là encore, cette abscisse curviligne est rarement calculable en valeur exacte.

III. Repère de Frenet

1) Base orthonormée directe (rappels) Définition

Un vecteur est unitaire ou normé si sa norme est 1.

EXEMPLE 2:

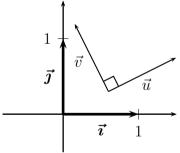
Le vecteur
$$\vec{u} \left(\frac{1/2}{\sqrt{3}/2} \right)$$
 est unitaire car $||\vec{u}|| = \sqrt{\left(\frac{1}{2} \right)^2 + \left(\frac{\sqrt{3}}{2} \right)^2} = 1$ mais $\vec{v} \left(\frac{-1}{2} \right)$ ne l'est pas car $||\vec{v}|| = \sqrt{5} \neq 1$

Définition

Un couple de vecteurs forme une base orthonormée directe si :

- ces vecteurs ne sont pas colinéaires (\rightarrow base)
- si la base a la même orientation que celle du plan; on « tourne » dans le même sens $(\rightarrow directe)$
- si les deux vecteurs sont orthogonaux et normés (unitaires)

EXEMPLE 3 : Sur la figure suivante, la base (\vec{u}, \vec{v}) est orthonormée directe.



Propriété 1

Soit une base (\vec{u}, \vec{v}) orthonormée directe.

Si le vecteur \vec{u} a pour coordonnées $\begin{pmatrix} X \\ Y \end{pmatrix}$ dans une base orthonormée $(\vec{\imath}, \vec{\jmath})$

alors \vec{v} a pour coordonnées $\begin{pmatrix} -Y \\ Y \end{pmatrix}$ dans cette base.

2) Repère de Frenet Définition

Le repère de Frenet $(M; \vec{T}, \vec{N})$ est défini de la facon suivante :

- \bullet son origine est un point M de la courbe:
- le vecteur \vec{T} est un vecteur unitaire tangent à la courbe en M et suivant l'orientation choisie:
- le vecteur \vec{N} , dit vecteur unitaire normal principal à la courbe, est tel que (\vec{T}, \vec{N}) soit une base orthonormée directe.

Remarques:

- Pour les physiciens, la base (\vec{T}, \vec{N}) n'est pas forcément directe car le vecteur \vec{N} est dirigé vers l'intérieur de la courbe.
- $-\vec{T}$ peut aussi être défini comme $\vec{T} = \frac{d\vec{OM}(s)}{ds}$, de coordonnées $\begin{pmatrix} x'(s) \\ y'(s) \end{pmatrix}$.
- Il y a deux repères de Frenet en un point donné (un pour chaque orientation).

3) Application

Pour déterminer le repère de Frenet :

- on calcule si nécessaire les coordonnées du point M
- on calcule les coordonnées du vecteur dérivé en M:

Courbe	\overrightarrow{M}'
de fonction : $y = f(x)$	$\begin{pmatrix} 1 \\ f'(x) \end{pmatrix}$
paramétrée : $x = f(t)$ et $y = g(t)$	$\begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix}$

- on divise ce vecteur par sa norme : $\vec{T} = \frac{\vec{M'}}{||\vec{M'}||}$
- on applique la propriété du 1°) pour trouver \vec{N} .

Ainsi, pour une courbe paramétrée, on aurait :

$$\vec{T}\left(\frac{x'}{\sqrt{x'^2+y'^2}}; \frac{y'}{\sqrt{x'^2+y'^2}}\right) \text{ et } \vec{N}\left(\frac{-y'}{\sqrt{x'^2+y'^2}}; \frac{x'}{\sqrt{x'^2+y'^2}}\right).$$

EXEMPLE 4 : Déterminer le repère de Frenet correspondant au point d'abscisse 1 de la courbe paramétrée définie par

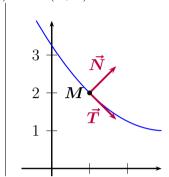
Réponse : Le point d'abscisse 1 correspond à t tel que 2t + 3 = 1 donc à t=-1. Le point de paramètre -1 est M(-1)=M(1;2). $\overrightarrow{M}'(t)$ (2;2t) donc $\overrightarrow{M}'(-1)$ (2;-2), qui a

$$\overrightarrow{M}'(t)$$
 (2; 2t) donc $\overrightarrow{M}'(-1)$ (2; -2), qui a pour norme $||\overrightarrow{M}'(-1)|| = \sqrt{2^2 + (-2)^2} = \sqrt{8}$.

On en déduit que \vec{T} a pour coordonnées

$$\left(\frac{2}{\sqrt{8}}; -\frac{2}{\sqrt{8}}\right) = \left(\frac{\sqrt{2}}{2}; -\frac{\sqrt{2}}{2}\right).$$

Pour trouver $\vec{N},$ on applique la propriété 1 qui donne $\vec{N}\left(\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2}\right)$.



4) Équation d'une tangente et d'une normale

On peut utiliser le repère de Frenet pour trouver l'équation de la tangente ou de la normale à la courbe en M.

Propriété 2

Si une droite a pour vecteur directeur $\vec{w} \begin{pmatrix} X \\ Y \end{pmatrix}$, avec $X \neq 0$, alors le

coefficient directeur est
$$\boxed{m = \frac{Y}{X}}$$
.

EXEMPLE 3 : Avec les données de l'exemple précédent, donner une équation de la normale en M.

Le vecteur $\vec{N}\left(\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2}\right)$ est un vecteur directeur de la normale donc

le coefficient directeur de la normale est $m = \frac{\sqrt{2}}{2} \div \frac{\sqrt{2}}{2} = 1$ donc son

équation s'écrit y = 1x + p. On trouve enfin p en remplaçant x et y par les coordonnées (1; 2) de M (seul point connu de la normale) ce qui donne p = 1: la normale a pour équation y = x + 1.

IV. Courbure

1) Courbure, rayon de courbure

Propriété 3

Propriété 3
Il existe un nombre γ tel que $\frac{d\vec{T}}{ds} = \gamma \vec{N}$

Définition

Ce nombre γ est appelé courbure algébrique de la courbe (sous-entendu au point M(t) = M(s).

<u>Remarques</u>: on a aussi $\gamma = \frac{d\alpha}{ds}$ où α est l'angle entre \vec{i} et \vec{T} .

Définition

Le rayon de courbure algébrique R est l'inverse de la courbure : $R = \frac{1}{2}$

Remarques:

- $-\gamma$ et R peuvent être négatifs (pour les physiciens, R est toujours positif).
- La courbure d'une droite est nulle (son rayon de courbure est considéré comme infini), le rayon de courbure d'un cercle est le rayon de ce cercle.

Propriétés 4

Les formules permettant de calculer le rayon de courbure sont :

$Courbe \dots$	R
de fonction : $y = f(x)$	$R = \frac{(1+y'^2)^{3/2}}{y''}$
paramétrée : $x = f(t)$ et $y = g(t)$	$R = \frac{(x'^2 + y'^2)^{3/2}}{x'y'' - y'x''}$

Exemple 3:

Avec
$$\begin{cases} x(t) = 2t + 3 \\ y(t) = t^2 \end{cases}$$
 on a $x'(t) = 2$, $x''(t) = 0$, $y'(t) = 2t$ et $y''(t) = 2$

d'où
$$R = \frac{(4+4t^2)^{3/2}}{4} = \frac{4^{3/2} \cdot (1+t^2)^{3/2}}{4} = 2(1+t^2)^{3/2}.$$

Par exemple, pour le point de la courbe d'abscisse 1 (valeur de t = -1), on trouve $R = 4\sqrt{2}$ donc $\gamma = \frac{1}{4\sqrt{2}}$.

2) Centre et cercle de courbure Définition

Le centre de courbure est la position limite de l'intersection des deux normales en M(t) et M(t+h) quand h tend vers 0.

Propriété 5

Si l'on note M = M(t), Ω le centre de courbure et Rle ravon de courbure correspondants au point M alors on a $\overrightarrow{M\Omega} = R\overrightarrow{N}$

Remarque : comme \vec{N} est unitaire, on a donc $M\Omega = |R|$.

Définition

Le cercle de courbure (ou cercle osculateur) est le cercle dont le centre est le centre de courbure et dont le ravon est le ravon de courbure.

Remarque : Le cercle de courbure est tangent à la courbe au point M.

Exemple 3:

Reprenons l'exemple précédent. Pour t = -1, nous avons M(1; 2), $\vec{T}\left(\frac{\sqrt{2}}{2}; -\frac{\sqrt{2}}{2}\right), \vec{N}\left(\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2}\right) \text{ et } R = 4\sqrt{2}.$

Par conséquent, $\overrightarrow{M\Omega} = R\overrightarrow{N}$ a pour coordonnées (4; 4) donc

Le centre de courbure Ω a donc pour coordonnées (5; 6).

Le cercle de courbure a pour centre $\Omega(5;6)$ et pour rayon $R=4\sqrt{2}$.

Il a donc pour équation : $(x-5)^2 + (y-6)^2 = (4\sqrt{2})^2 = 32.$

