Corrigé du Contrôle : Probabilités

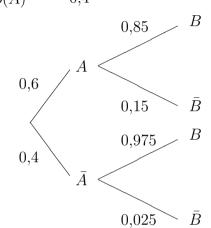
Exercice I

- 1°) a) $P(A \cup B) = P(A) + P(B) P(A \cap B) = 0.6 + 0.9 0.51 = 0.99$.
 - **b)** $P(\bar{B}) = 1 P(B) = 0.1.$
 - c) $P_B(A) = \frac{P(A \cap B)}{P(B)} = \frac{0.51}{0.9} = \frac{17}{30}$.
 - d) $P(A \cap \overline{B})$: ici, nous pouvons soit écrire un tableau à double entrée et le compléter, soit remarquer (avec un schéma) que A est la réunion de deux événements incompatibles : $A \cap B$ et $A \cap \overline{B}$ donc $P(A) = P(A \cap B) + P(A \cap \overline{B})$ d'où $0,6 = 0,51 + P(A \cap \overline{B})$ ce qui donne $P(A \cap \overline{B}) = 0,6 0,51 = 0,09$.
- 2°) Deux justifications possibles :
 - $-P_B(A) = \frac{17}{30} \simeq 0.57$ et P(A) = 0.6 donc $P_B(A) \neq P(A)$ donc A et B ne sont pas indépendants.
 - $P(A) \times P(B) = 0.6 \times 0.9 = 0.54$ et $P(A \cap B) = 0.51$ donc $P(A \cap B) \neq P(A) \times P(B)$ donc A et B ne sont pas indépendants.

Exercice II

Pour le tableau : nous avons déjà $P(A),\ P(B),\ P(\bar{B}),\ P(A\cap B)$ et $P(A\cap \bar{B})$ (en gras dans le tableau).

Le reste s'obtient par soustractions.


Par contre les probabilités conditionnelles n'apparaissent pas dans ces tableaux.

	A	\bar{A}	
B	0,51	0,39	0,9
\bar{B}	0,09	0,01	0,1
	0,6	0,4	1

Pour l'arbre : nous avons déjà P(A) et $P(\bar{A})$. Attention : du fait de la disposition de l'arbre, $P_B(A)$ n'est pas utile.

$$p_A(B) = \frac{p(A \cap B)}{p(A)} = \frac{0.51}{0.6} = \frac{17}{20} = 0.85 \text{ donc } p_A(\bar{B}) = 1 - 0.85 = 0.15;$$

$$p_{\bar{A}}(B) = \frac{p(\bar{A} \cap B)}{p(\bar{A})} = \frac{0.39}{0.4} = 0.975 \text{ donc } p_{\bar{A}}(\bar{B}) = 1 - 0.975 = 0.025.$$

