TP: nombres complexes et rotations planes

Légende :

Travail sur Geogebra

Travail sur cahier

Exercice 1 : quelques calculs avec les complexes

1°) Calculez (1+i)(2+i).

Vérifiez le résultat dans la partie « Calcul formel ». Le nombre i est obtenu avec la combinaison de touches Alt i.

 2°) a) Calculez $(1+i)^2$.

b) Déduisez-en la forme algébrique de (1+i)²⁰¹⁸.

Vérifiez la réponse du 2°) b).

On peut bien sûr faire d'autres opérations, comme des divisions de complexes par exemple.

Exercice 2 : représentation graphique

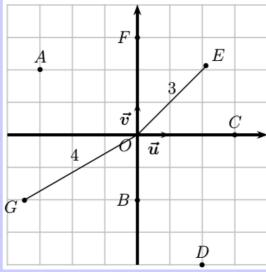
Affichage / Graphique et Affichage / Champ de saisie si nécessaire.

Dans la zone de Saisie, tapez P=1+2 í ou P=(1+2í) pour créer le point P d'affixe 1+2i.

Tapez M=2*exp(í theta) ou M=2*e^(í theta) (utilisez Alt e et Alt i), acceptez la création d'un curseur pour theta.

Activez la trace sur le point M. Déplacez le curseur theta : que peut-on dire du point M ?

En entrant uniquement des nombres complexes dans la zone de Saisie, placez dans Geogebra les points A, B, C, D, E, F du graphique suivant :



G a la même ordonnée que B.

Construisez G à l'aide d'outils géométriques de Geogebra (droite, cercle).

Demandez à Geogebra l'angle entre \vec{u} et \overline{OG}

Écrivez la forme exponentielle de l'affixe de G puis vérifiez avec Geogebra.

Exercice 3 : passage d'une forme à l'autre

La conversion de la forme algébrique vers la forme exponentielle et réciproquement se fait soit dans le mode Graphique (valeurs approchées) soit dans le mode Calcul Formel (valeurs exactes).

Forme exponentielle → Forme algébrique (mode Graphique)

Cochez Affichage / Algèbre si ce n'est pas déjà le cas.

Nous avions créé dans l'exercice 2 le point E avec une forme exponentielle mais Geogebra l'a automatiquement transformée en forme algébrique approchée.

1°) Donnez la forme algébrique exacte puis approchée de $4e^{-i\frac{\delta n}{3}}$

Vérifiez la réponse approchée.

Forme algébrique → Forme exponentielle (mode Graphique)

Faîtes un clic droit sur le point A de l'exercice 2 puis, choisissez Propriétés / Algèbre et choisissez « Coordonnées polaires » dans Coordonnées.

2°) Quelle est la forme exponentielle approchée de l'affixe de A?

Forme exponentielle → Forme algébrique (mode Calcul Formel)

Comme dans le mode graphique, un complexe entré sous forme exponentielle est mis (presque entièrement) sous forme algébrique.

Tapez par exemple : $\exp(i \pi/3)$

puis Développer(exp($i \pi/3$))

3°) Donnez la forme algébrique exacte de $4e^{-i\frac{5\pi}{3}}$

Forme algébrique → Forme exponentielle (mode Calcul Formel)

On utilise tout simplement la fonction FormeExponentielle(...)

4°) Donnez la forme exponentielle exacte de $3\sqrt{(3)}-3i$.

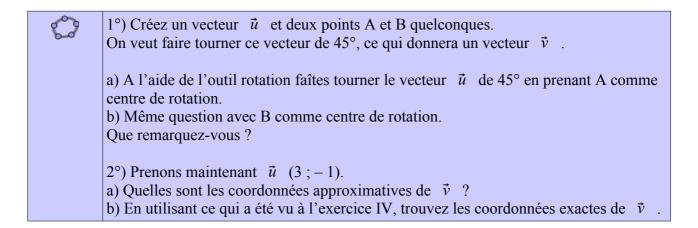
Exercice 4: multiplication par eia

d'angle 135°.

83	Affichage / Graphique et Affichage / Champ de saisie si nécessaire.
Saisie:	1°) a) Tapez ω=exp(í alpha) (ou ω=exp(í α)) et acceptez la création d'un curseur pour alpha. Modifiez le curseur pour qu'il aille de – 10 à 10.
	b) Placez un point A n'importe où.
Saisie:	c) Tapez par exemple A'=A* ω. (Geogebra multiplie l'affixe de A par ω et crée un point A' avec le résultat).
	d) Changez les valeurs de alpha. Pour quelle(s) valeur(s) de alpha le point A' est-il sur A ?
	e) Que peut-on dire du point A'? Vérifiez-le en affichant l'angle $\widehat{AOA'}$. (il faudra peut-être à un moment aller chercher dans Options/Avancé).
	2°) a) En utilisant l'outil Rotation, déterminez les coordonnées approximatives de l'image A' du point A (5 ; – 1) par la rotation de centre O et d'angle – 60°.
	b) Déterminez les coordonnées exactes de A'

3°) Même questions avec l'image B' du point B (-2; 3) par la rotation de centre O et

Exercice 5 : image d'un vecteur par une rotation



Remarque : à tout vecteur \vec{u} de coordonnées (a ; b), on peut associer un nombre complexe Z = a + b i, qu'on appelle affixe du vecteur \vec{u} .

Exercice 6 : rotation d'un point autour d'un point quelconque

Principe pour faire tourner d'un angle α un point B autour d'un point A :

- ① former $\vec{u} = \overrightarrow{AB}$, voir ses coordonnées et en déduire son affixe Z;
- ② multiplier Z par $e^{i\alpha}$; on obtient l'affixe de $\vec{v} = \overrightarrow{AB'}$;
- 3 en déduire l'affixe de B' puis les coordonnées de B'.

- 1°) On veut faire tourner le point B (4; -1) autour de A (2; 3), d'un angle de 45°, ce qui donnera un point B'.
- a) A l'aide de l'outil rotation trouvez les coordonnées approximatives de B'.
- b) On applique maintenant la procédure vue ci-dessus pour trouver avec Geogebra les coordonnées exactes de B'.
- ① créez $\vec{u} = \overrightarrow{AB}$, lisez ses coordonnées et déduisez-en son affixe Z;
- ② multipliez Z par $e^{i\alpha}$ (où $\alpha = ...$), ce qui donne un nombre complexe Z'; créez le vecteur \vec{v} d'affixe Z'; faîtes le partir de A.
- 3 déduisez-en l'affixe de B' puis les coordonnées de B'.
- 2°) Même question en cherchant l'image de C (-2; -3) par la rotation d'angle 120° autour de D (1; -1).