TP : Calcul intégral avec Geogebra

Exercice I : recherche d'une primitive

On cherche les primitives de la fonction *f* définie sur IR par : $f(x) = x (x^2 - 7)^5$.

2	Affichez le mode « Calcul formel ». Entrez ceci : $f(x) = x(x^2-7)^2$			
	rien ne se passe.			
	Entrez maintenant ceci : $f(x) := x(x^2-7)^5$			
	et la fonction f est définie pour Geogebra.			

ę

Remarque : le = sert surtout dans les équations ; pour définir une fonction dans le mode « Calcul formel \gg on utilise un := à la place du =.

¢	Essayez maintenant la commande suivante : Intégrale[f]Intégrale[f(x)]qui donne l'expression des primitives de f.Si on veut que cette expression devienne une fonction, on tapera : $F(x) := Intégrale[f(x)]$
-	
	Trouvez la primitive de f qui s'annule en 4.

Exercice II : recherche d'intégrales

Définition : l'intégrale de *a* à *b* de la fonction *f* est : $\int_{a}^{b} f(x) dx = F(b) - F(a)$

La procédure est donc :

- ① trouver une primitive F de f;
 - ② calculer F(b) F(a).

C

1

Vérifiez vos réponses, par exemple, pour la première intégrale : Intégrale[3x²,-1,1]

Exercice III : calculs d'aires

1°) La courbe ci-contre représente, dans un repère d'unités graphiques 2 cm sur l'axe des abscisses et 1 cm sur l'axe des ordonnées, la fonction *f* définie sur [0 ; 2] par : $f(x) = x^{3} - 4x^{2} + 3x + 2.$

On cherche à calculer l'aire exacte de la partie hachurée.

La procédure générale est :

① trouver une primitive F de f;

② calculer l'intégrale $I = \int_{a}^{b} f(x) dx = F(b) - F(a)$ où *a* et *b* sont x_{min} et x_{max} ;

- ③ si la fonction est positive sur [a ; b] alors I représente l'aire, en unités d'aire^(*);
 si la fonction est négative sur [a ; b] alors I représente l'aire, en unités d'aire ;
- ④ multiplier le résultat par l'unité d'aire pour obtenir l'aire en cm².
- (*) l'unité d'aire est l'aire d'un rectangle dont la base est l'unité en abscisse et la hauteur est l'unité en ordonnée.

Exécutez chacune des étapes ①, ② et ④ .

Pour les plus rapides, prouvez (pour l'étape ③), que la fonction reste positive entre 0 et 2, conformément au graphique.

Vérifiez les étapes ① et ② avec Geogebra.

Pour visualiser l'intégrale sur le graphique, on pourra taper :

Intégrale[f,0,2]

dans la partie Saisie (qui concerne l'aspect graphique de Geogebra).

Vérifiez à la main.

Exercice IV : ordre de grandeur d'une aire

On reprend la courbe du 1°) de l'exercice III :

On appelle *A* l'aire en unités d'aire de la partie hachurée.

 1°) En utilisant un triangle et un rectangle, « prouvez » que 2 < *A* < 5.
 2°) Donnez un encadrement de *A* plus précis avec deux trapèzes. Vérifiez la cohérence avec la réponse trouvée à l'exercice III.

Voyons maintenant comment trouver une valeur approchée d'une intégrale avec des rectangles de plus en plus fins (sommes de Riemann).

ŝ	Recréez la courbe sur Geogebra, on supposera que la fonction s'appelle f . Créez un curseur n variant de 1 à 100. Tapez dans la ligne de Saisie :		
	SommeInférieure[f,0,2,n]		
	puis		
	SommeSupérieure[f,0,2,n]		
	Faîtes varier la valeur de n pour obtenir une valeur « assez précise » de A . (on peut aussi utiliser SommeSupérieure[f,0,2,n]).		

Exercice V : méthode de Monte-Carlo

1°) On cherche à calculer une valeur approchée de l'aire coloriée ci-contre, sous la courbe de la fonction définie sur [0; 1] par $f(x) = 1 - x^2$.

La méthode de Monte Carlo permet de trouver une valeur approchée d'une intégrale en « jouant aux fléchettes ».

On appellera « carré unité » l'ensemble des points M(x ; y) tels que $0 \le x \le 1$ et $0 \le y \le 1$.

Supposons que l'on lance des fléchettes dans le carré unité, certaines (en vert sur le graphique) seront sous la courbe de f et d'autres (en gris sur le graphique) au dessus.

Par exemple, si 60 fléchettes sur 100 arrivent sous la courbe alors :

	Sous la courbe	Carré unité
Fléchettes	60	100
Aire	A	1

ce qui donne (produit en croix) : $A \simeq 60 / 100 = 0.6$.

Effacez tout. Créez la fonction f.

Tapez dans la ligne de Saisie :

(random(), random())

La commande random() choisit un nombre au hasard entre 0 et 1. La commande (random(), random()) créé donc un point à coordonnées aléatoires mais comprises entre 0 et 1 (donc un point du « carré unité ».

Effacez ce point et tapez dans la ligne de Saisie : Séquence((random(), random()), i, 1, 100) Geogebra crée une liste qu'il appelle L1 (donc L_1).

La commande Séquence permet de répéter une même instruction, ici la création d'un point aléatoire dans le carré unité, un certain nombre de fois, ici 100 fois (i va de 1 à 100).

On isole ensuite de la liste L₁ les points qui sont sous la courbe de f: $GarderSi(y(A) \le f(x(A)), A, L_1)$ **Explications** : le point A va être remplacé par chaque point de la liste L1 (avec GarderSi(...,A,L 1)); > on regarde si, pour chaque point A, on a y < f(x) (avec y(A) < f(x(A))); auquel cas le point est sous la courbe ; ▶ la commande GarderSi(...) ne conserve que les points vérifiant cette condition $y(A) \leq f(x(A)).$ Geogebra créé une nouvelle liste L₂ avec tous les points sous la courbe. On demande enfin à Geogebra quel proportion de points sont sous la courbe : $Longueur(L_2)/100$ (pour voir une valeur approchée du résultat : clic-droit puis Propriétés \rightarrow Algèbre \rightarrow Décocher « Symbolique »). Ceci est une valeur approchée de l'aire *A*. Appuyez sur F9 pour relancer le lancer des « fléchettes ». Modifiez les commandes précédentes pour effectuer 10000 lancers de fléchettes et ainsi avoir une meilleure précision dans la valeur de A. 2°) Retrouvez une valeur approchée de l'aire de la figure de l'exercice IV avec la méthode de Monte Carlo.