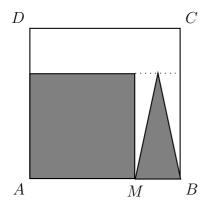

Suppléments : fonctions du second degré


Exercice I (parabole passant par trois points quelconques)

Soit une f une fonction définie par $f(x) = ax^2 + bx + c$ dont la courbe doit passer par les trois points représentés ci-dessous.

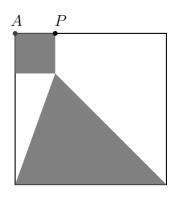
- 1°) À l'aide d'un système, donnez les valeurs de a, b et c.
- 2°) En déduire f(0). Vérifiez sur le graphique.
- 3°) Résoudre graphiquement puis par le calcul l'équation f(x) = 0.
- **4°)** Résoudre graphiquement puis par le calcul l'inéquation $f(x) \ge 1$.
- 5°) a) La courbe admet un axe de symétrie. Donnez l'équation de cette droite.
 - b) Sans utiliser la propriété du cours, prouvez d'une autre façon que c'est bien un axe de symétrie.

Exercice II

Le carré ABCD a un côté de longueur 8 cm. M est un point du segment [AB]. On dessine comme ci-contre dans le carré ABCD :

- un carré de côté [AM]
- un triangle isocèle de base [MB] et dont la hauteur a même mesure que le côté [AM] du carré.

On s'intéresse aux aires du carré, du triangle, du motif constitué par le carré et le triangle.


- 1°) On voudrait que le motif ait une aire égale à la moitié de celle du carré *ABCD*. Quelles dimensions faut-il donner au motif?
- 2°) Déterminer l'évolution de l'aire du motif quand AM varie de 0 à 8.
- 3°) a) L'aire du triangle est-elle constante ou variable?
 - b) Est-il possible de faire en sorte que l'aire du triangle soit la plus grande possible? Si oui préciser dans quel(s) cas?
- 4°) a) Est-il possible que l'aire du triangle soit égale à l'aire du carré?
 - b) Est-il possible de faire en sorte que l'aire du triangle soit plus grande que l'aire du carré? Si oui, préciser dans quels cas c'est possible.

Exercice III

Un jardinier paysagiste doit créer un jardin de fleurs dont le cahier des charges est le suivant :

- on dispose d'un terrain de forme carrée de côté 10 m,
- partie à fleurir doit correspondre au schéma rouge représenté sur le dessin ci-contre (carré et triangle ayant un sommet commun), le point P est situé sur un côté du carré,
- la zone à fleurir doit être d'aire minimale.

Pouvez-vous aider le jardinier?

Exercice IV

ABCD est un carré de côté 6 unités. P est un point de [DC].

Q est un point de [BC] et S est un point de [AD] tel que DP = CQ = AS = x avec x qui appartient à [0; 6].

R est un point de [AB] tel que AR = 1.

- 1°) Montrer que l'aire A(x) du qudrilatère PQRS vaut : $A(x) = x^2 4x + 21$.
- 2°) Résoudre l'équation et l'inéquation suivantes :
 - **a)** A(x) = 18
 - **b)** A(x) > 26
- 3°) Pour quelle valeur de x l'aire du quadrilatère PQRS est-elle minimale?
- 4°) Pour quelle valeur de x l'aire du quadrilatère PQRS est-elle maximale?

Exercice V

Soit ABCD un rectangle tel que AB = 10 et AD = 3.

Soit M un point de [AB].

Déterminez les positions possibles de M pour que CMD soit un triangle rectangle.